Назначение резисторов в системе зажигания

Бесконтактная система зажигания

Дальнейшим шагом в развитии систем зажигания индуктивного типа было создание бесконтактных систем, в которых конструкторы полностью отказались от разрыва электрической цепи первичной обмотки катушки зажигания механическим способом. Функцию генерирования управляющего сигнала на базу транзистора передали магнитоэлектрическому датчику, использующему в своей работе принцип, основанный на эффекте Холла.
Отказ от механических контактов позволил существенно повысить надежность и стабильность работы системы зажигания, поэтому они быстро вытеснили контактные и контактно-транзисторные системы, применявшиеся на автомобильных двигателях.

На рисунке 1 представлена схема системы зажигания с магнитоэлектрическим генераторным датчиком, предназначенная для восьмицилиндровых двигателей. Она содержит электронный коммутатор, датчик распределитель, добавочный резистор и катушку зажигания.
Магнитоэлектрический датчик конструктивно объединён с высоковольтным распределителем.

Работает бесконтактная система зажигания (БСЗ) следующим образом (рис. 1).
При включенном выключателе 5 и неработающем двигателе транзистор VT1 (К.Т630Б) закрыт, так как его база и эмиттер имеют одинаковый потенциал.
При закрытом транзисторе VT1 потенциал базы транзистора VT2 (К.Т630Б) выше потенциала эмиттера.
По переходу база-эмиттер протекает ток управления по цепи:
положительный вывод аккумуляторной батареи – контакты выключателя зажигания – положительный вывод добавочного резистора – положительный вывод коммутатора – дроссель-диод VD6 – резисторы R5 и R6 – переход база-эмиттер транзистора VT2 – резисторы R10 и R11 – корпус автомобиля – отрицательный вывод аккумуляторной батареи.

Ток управления открывает транзистор VT2, что в свою очередь приводит к появлению тока управления транзистора VT3 (К.Т809А), открывается транзистор VT4 (КТ808А). При этом через коллектор-эмиттер транзистора VT4 пойдет ток по цепи:
положительный вывод аккумуляторной батареи – контакты выключателя зажигания – добавочный резистор – первичная обмотка катушки зажигания – диод VD7 – коллектор-эмиттер транзистора VT4 – «масса» – отрицательный вывод аккумуляторной батареи.
При этом в магнитном поле катушки зажигания накапливается электромагнитная энергия.

При прокручивании коленчатого вала двигателя стартером в магнитоэлектрическом датчике вырабатывается переменное напряжение, которое поступает на вывод «Д» коммутатора. С вывода «Д» сигнал датчика через диод VD1 (КД102А) и цепь R1C3 поступает на базу транзистора VT1.
Диод VD1 пропускает с датчика импульсы только положительной полярности.
Цепь R1C3 служит для исключения электрического угла опережения зажигания, присущего магнитоэлектрическим датчикам при изменении частоты вращения.

Поступивший на базу транзистора VT1 положительный импульс вызывает увеличение потенциала базы относительно эмиттера. В результате в транзисторе VT1 будет протекать ток управления по цепи:
обмотка датчика – диод VD1 – цепь R1C3 – переход база-эмиттер транзистора VT1 – «масса» – обмотка датчика.
Транзистор VT1 откроется и зашунтирует переход база-эмиттер транзистора VT2, что вызовет закрытие транзистора VT2, а затем и закрытие транзисторов VТЗ и VT4.

Запирание транзистора VT4 приводит к резкому прекращению первичного тока в катушке зажигания и возникновению высокого напряжения во вторичной обмотке катушки зажигания, которое через распределитель подводится к соответствующей свече зажигания.
Затем после исчезновения импульса с датчика транзистор VT1 закроется, а транзисторы VT2, VT3 и VT4 откроются, и в магнитном поле катушки зажигания будет опять накапливаться электромагнитная энергия.

Транзисторный коммутатор содержит целый ряд дополнительных элементов, служащих для защиты и улучшения условий работы схемы. Стабилитрон VD5 (КС980А) и конденсатор С7 защищают схему от напряжения, индуктируемого в первичной обмотке катушки зажигания.

Диод VD3 (КД102А) ограничивает амплитуду импульса с датчика и, таким образом, защищает переход база-эмиттер транзистора VT1 от пробоя.
Диод VD7 защищает транзистор VT4 от обратной полярности источника питания.

Конденсатор С6 и резистор R7 образуют цепь обратной связи, по которой положительная полуволна ЭДС самоиндукции с первичной обмотки катушки зажигания поступает на базу транзистора VT1, ускоряя его отпирание, что способствует обеспечению бесперебойности искрообразования на низких частотах вращения.

Конденсаторы С4 и С5 защищают переходы база-эмиттер транзисторов VT2 и VT3 от всплесков напряжения и исключают ложные срабатывания транзисторов VT2 и VT3. Резисторы R8, R10 и R11, включенные между эмиттерами и базами транзисторов VT2, VT3 и VT4, служат для повышения предельно допустимого напряжения между коллектором и эмиттером транзисторов.

Резистор R12 и конденсатор С8 уменьшают мощность, выделяемую в транзисторе VT4 при его закрытии, во время переходного процесса. Конденсаторы С1 и С2 и дроссель уменьшают пульсации напряжения в цепи питания коммутатора, а диод VD6 (КД212Б) защищает от обратной полярности.

Защита транзисторного коммутатора от перенапряжений питания осуществляется схемой, состоящей из стабилитрона VD2 (КС515А), стабилитрона VD4 (КС119А) и резисторов R2 и R3.
При повышении напряжения питания до 18 В напряжение на стабилитроне VD2 будет больше напряжения стабилизации и на базу транзистора VT1 поступит положительное смещение относительно эмиттера. Независимо от импульсов датчика транзистор VT1 откроется, а транзисторы VT2, VT3 и VT4 закроются, и двигатель остановится.

Транзисторный коммутатор 13.3734 размещен в ребристом корпусе, отлитом из алюминия (см. рисунок вверху страницы).
Коммутатор имеет три вывода:

  • вывод «Д» – для соединения с низковольтным выводом датчика-распределителя;
  • вывод «КЗ» – для соединения с выводом катушки зажигания;
  • вывод «+» – для соединения с выводом «+» добавочного резистора.

Катушка зажигания Б116 выполнена с электрически разделенными обмотками, как и катушка Б114 для контактно-транзисторной системы зажигания, и отличается от последней обмоточными параметрами.
Добавочный резистор 14.3729 состоит из двух нихромовых спиралей, которые размещены в металлическом корпусе. Выводы, к которым присоединены концы спиралей, имеют маркировку «+», «С», «К». Величина сопротивления спирали между выводами «С» и «+» составляет 0,71 Ом, а спирали между выводами «С» и «К» – 0,52 Ом.

Датчик-распределитель 24.3706 (на схеме рис. 1) предназначен для управления работой транзисторного коммутатора, распределения импульсов высокого напряжения по свечам зажигания в необходимой последовательности, для автоматического регулирования момента искрообразования в зависимости от частоты вращения коленчатого вала и нагрузки двигателя.

Дальнейшее развитие системы питания бензиновых двигателей связано с широким внедрением компьютерных технологий. Последним словом техники в этом плане являются микропроцессорные системы зажигания, управляемые бортовым компьютером автомобиля. Электронный блок управления (ЭБУ), собирающий информацию от многочисленных датчиков, позволяет эффективно управлять не только системой зажигания, но и другими системами двигателя – питания, охлаждения, контроля над отработавшими газами.
Комплексное управление работой двигателя позволило максимально использовать экономические и динамические свойства двигателя при соблюдении установленных экологических норм.
Ведутся работы и над повышением эффективности системы зажигания путем внедрения многокатушечных модуляторов высокого напряжения, а также в других перспективных направлениях.

В этой статье вы найдёте:

Материал ориентирован на начинающего автолюбителя, но люди с богатым опытом и глубоким знанием теории могут внести свои поправки и дополнения, отписавшись в комментариях под статьей.

Пожалуй, из всех систем автомобиля зажигание эволюционировало в наименьшей степени. Нельзя сказать, что в зажигание не вносились усовершенствования, более того, многие из них помогли выйти бензиновым моторам на качественно новый уровень, но принципиальных прорывов не случалось вплоть до появления микропроцессорного управления двигателем. Но и тогда многие, к примеру, американские машины еще долго имели в конструкции старый добрый механический распределитель зажигания.

Читайте также:  Датчик холла ваз 21213 карбюратор

Настройка зажигания

Если у вас в системе зажигания все исправно, и вы просто ищите информацию о том, как настроить зажигание в Волге, а рассказы о том, как оно устроено вам не интересны, прочтите только первый блок. Если же вы новичок, прочтите текст до конца. Надеюсь он снимет многие ваши вопросы в дальнейшем.

Для настройки нам потребуется: кривой стартер, ключ на 10, бумажка и свечной ключ. Этим вполне обойдемся.

В случае, если мы выставляем зажигание после снятия и установки привода трамблера, порядок действий следующий.

  1. Ставим машину на ручник.
  2. Выворачиваем свечу первого цилиндра, плотно затыкаем отверстие в головке бумажкой.
  3. Теперь, проворачивая коленчатый вал двигателя кривым стартером или за лопасти вентилятора (делаем это осторожно, чтобы их не обломить), ждем пока нашу бумажную пробку не выбьет. При этом метка на шкиве коленвала должна примерно совпасть с третьей меткой на передней крышке двигателя. Теперь мы точно знаем, что первый цилиндр достиг верхней мертвой точки в конце такта сжатия.

Обратите внимание: на шкиве двигателя ЗМЗ 21А есть риска и отверстие. Меткой является именно отверстие. Меткой на двигателе является штифт.

  1. Снимаем крышку трамблера и убеждаемся, что бегунок у нас смотрит на контакт первого цилиндра. Если это так, привод трамблера установлен верно, можно перейти к настройке. Если бегунку больше глянулся четвертый цилиндр, значит при сборке мы поставили валик привода трамблера с поворотом на 180° от правильного положения. Отпустим крепеж и просто развернем его, как положено.
  2. Завернем свечу на ее место. Теперь ослабляем болтик на крепежной пластине трамблера и выставляем его положение с незначительным опережением.
  3. Слегка подтягиваем болтик.
  4. Заводим двигатель.
  5. 8. Снова отпускаем болт фиксации, слегка поворачивая трамблер в сторону опережения, при этом обороты будут расти. Пробуем резко открыть дроссель.

Добиваемся такого положения трамблера, когда резкое открытие дросселя не будет вызывать остановку мотора, но будет к нему максимально приближенным.

Теперь ходовая подстройка.

Разгоняемся до скорости 40 км/ч на прямой передаче, выравниваем скорость, а потом резко нажимаем на педаль акселератора. Двигатель должен на доли секунды начать детонировать и перейти к уверенному разгону. Если детонации не было, зажигание позднее, поправляем трамблер в сторону опережения. Если двигатель заглох или детонировал долго и потом нехотя перешел к набору оборотов, значит доворачиваем угол в позднюю сторону.

Вот и вся настройка. Окончательно подтягиваем болтик-фиксатор и с удовольствием ездим.

Конечно, можно настроить зажигание и по стробоскопу на стенде, но это путь не для настоящего волговода.

Как работает зажигание

Как мы уже установили, мотор не может работать в двух случаях: нечему гореть или нечем поджечь. И если с топливной системой все более или менее понятно, зажигание многих автолюбителей, немного пугает. Вся проблема в том, что они просто не понимают как это вообще работает.

Попробуем разобраться с самого начала.

Задача системы зажигания — в нужный момент подать высокое напряжение на свечу соответствующего цилиндра. Напряжение приходит на центральный электрод свечи и проскакивает искрой на ее боковой электрод, соединенный с массой. Это и есть та самая живительная искра, что воспламеняет топливо. За распределение искры отвечает трамблер, а высокое напряжение обеспечивает катушка. Здесь все понятно. Так от чего некоторые не могут победить неисправности в такой простой системе и вынуждены обращаться в автосервисы, в которых, к слову, уже и не помнят, что такое трамблер?

Придется копнуть немного глубже, аж до школьного курса физики.

Откуда берется высокое напряжение?

Для многих ответ очевиден — высокое напряжение «делает» катушка. Черт побери, его действительно «делает» именно она… Но как?

Катушка представляет из себя автотрансформатор. Получает низкое напряжение и отдает высокое. В чем же тут вопрос? А вопрос в том,что трансформатор может работать лишь с переменным напряжением, а в бортовой сети автомобиля оно постоянное.

А работает это так:

В распределителях зажигания для контактных систем имеется очень хитрый узел, именуемый прерывателем. На валу трамблера расположен кулачок, который вращаясь воздействует на подвижный контакт, заставляя его замыкать и размыкать цепь первичной обмотки катушки зажигания. Так получается псевдопеременное, напряжение на входе катушки. И вот оно уже наводит требуемое нам напряжение до 25 Кв во вторичной обмотке катушки. Для того, чтобы контактная группа прерывателя не искрила, в схему включен конденсатор. К слову, именно его наличие на корпусе скажет вам о том, что данный трамблер предназначен именно для контактной системы зажигания.

Такая схема достаточно надежна и проста, но требует периодического обслуживания. Нужно следить за чистотой контактных площадок прерывателя, и при настройке добиваться их правильного взаиморасположения (при касании площадки должны быть параллельны). Часто причиной слабой искры бывает неисправный конденсатор. При пробое он просто замыкает цепь через себя, и катушка получает на вход постоянное напряжение. При его обрыве, искра начинает образовываться между контактами прерывателя, и часть энергии теряется. Катушка получает слишком низкое напряжение, в результате на свечках у вас искра очень слабая. Кроме того, контакты прерывателя начинают очень быстро обгорать.

С развитием радиоэлектроники, от механического прерывателя в трамблере отказались. Теперь его роль выполняет коммутатор с оптическим, индукционным или датчиком холла.

Традиционно на автомобилях ГАЗ используется индуктивная система.

На валу распределителя зажигания закреплен магнит, который, вращаясь внутри обмоток катушки, формирует на ее выходе переменное напряжение номиналом 3В. По сути, это самый обыкновенный генератор переменного тока.

Далее это напряжение поступает на вход коммутатора (клемма Д). Коммутатор усиливает это напряжение и в виде прямоугольных импульсов через силовой транзистор подает его на клему «К» катушки зажигания

Наиболее распространенный коммутатор для автомобилей Волга и ГАЗель 13.3734 или 131.3734

Это система с нерегулируемой продолжительностью накопления энергии. Она достаточно проста и надежна, однако имеет два заметных недостатка:

  • при изменении частоты вращения коленчатого вала изменяется форма и величина напряжения на выходе датчика, что влияет на искрообразование;
  • при росте количества оборотов коленчатого вала вторичное напряжение снижается.

Этих недостатков лишена система, построенная на базе датчика Холла. Здесь продолжительность накопления энергии жестко задается, что позволяет получить более равномерные характеристики.

Работа самого датчика основана на одноименном эффекте. Через полупроводниковую пластинку протекает ток питания, если к ней поднести магнит, то в направлении, перпендикулярном протеканию тока питания, также возникает ЭДС.

Работает так:

В трамблере расположен магнит и на некотором расстоянии от него — датчик холла. Между ними расположен вращающийся стакан экрана с четырьмя окнами. При нахождении окна между магнитом и полупроводником датчик формирует импульс для коммутатора.

В отличии от индуктивных систем, здесь уже с самого датчика импульс имеет прямоугольную форму и, поступая в коммутатор, обрабатывается таким образом, чтобы форма выходного напряжения не зависела от частоты вращения коленчатого вала. Соответственно, более стабильно искрообразование и ровнее работа двигателя.

Конечно, и здесь есть свои недостатки:

  • коммутатор более сложен и крайне чувствителен к всплескам напряжения. По этой причине в его конструкции достаточно много разнообразных схем защиты;
  • более высокая стоимость.

Также бывают системы с оптическим датчиком. По конструктиву они схожи с зажиганием на датчике Холла.

Читайте также:  Датчики влияющие на расход топлива

Как формируется искра?

За формирование искры отвечает свеча зажигания. Она представляет из себя два электрода, между которыми и проскакивает искра. Прибор простой и, вроде, совершенно понятный, но отчего одни свечи хороши, а другие плохи?

Начнем с того, как работает свеча. Высокое напряжение приходит на ее центральный электрод, второй же электрод (боковой) завязан на массу автомобиля. Так как напряжение достаточно высокое, его энергии хватает на то, чтобы преодолеть расстояние между электродами и создать как бы замыкание в воздухе. Именно поэтому, расстояние между электродами называется искровым промежутком, и промежуток этот должен быть строго заданной величины, которая определяется не только в зависимости от отдачи катушки, но и от степени сжатия двигателя. Именно поэтому, простая установка свечей от «хорошей» иномарки, часто не только не дает положительного эффекта, но и иногда приводит к ухудшению работы мотора. По той же причине, шарлатанством являются разнообразные упражнения по сверлению бокового электрода и прочие мероприятия по «улучшению» свечей.

Еще некоторые твердо уверены, что свеча с длинной резьбовой частью (юбкой), подает искру в более правильно е место — типа, ближе к центру камеры, и оттого делает сгорание смеси более эффективным. Это тоже миф. Единственное, что вы действительно заметите после такого тюнинга — сложность выворачивания свечей. Нагар просто забьет выступающую в камеру сгорания резьбовую часть.

Еще один важный момент — калильное число свечи. Этот показатель зависит от используемого бензина. Для моторов на А-72, свечи нужны холодные, например А11, их центральный электрод почти целиком спрятан в изоляторе, а под А-92, нужны свечи типа А17 с сильно выступающим электродом. Если свеча для мотора слишком горячая, вы столкнетесь с, так называемым, дизелингом или калильным зажиганием, когда двигатель отказывается глохнуть при выключении зажигания.

Свеча, всего-навсего, должна быть качественной, иметь предусмотренный для данного мотора искровой промежуток, правильную длину юбки и соответствовать калильному числу.

Так как свечей сейчас производится огромное количество, в том числе и многолепестковых, с улучшенным искрообразованием, ориентируйтесь на применяемость, указанную изготовителем.

Свечка от Chevrolet ZR1, не сделает из вашей машины суперкар. Не пытайтесь обмануть физику.

Высоковольтные провода на вид, пожалуй, даже проще свечей, однако и тут есть несколько тонкостей.

Изначально, никаких особенных требований к проводам никто не предъявлял. Все, что от них требовалось — надежная изоляция, выдерживающая на пробой несколько киловольт, и хорошая проводимость. Именно на этом и были сосредоточены производители. Затем машины стали усложняться, и в них появилось оборудование, чувствительное к высокочастотным помехам, а старые добрые свечные провода, как раз были чудным источником именно таких наводок. Приемники шумели, электронные блоки сбоили… В общем, для того, чтобы как-то нивелировать эти неприятные эффекты, было решено ввести в систему помехогасящие сопротивления. Расположили их прямо в свечных колпачках. Стало лучше. Затем появились специальные свечи с уже встроенным резистором. Их легко опознать по символам «P» или «R» в окончании индекса. Также помехогасящий резистор есть в бегунке самого распределителя зажигания.

А со временем, появились силиконовые провода. Они куда долговечнее, не каменеют на морозе, в конце концов, оживляют подкапотное пространство веселыми расцветками. И вот именно здесь нас ждет интересное.

Вроде бы, ставим отличные, фирменные провода, а мотор работает как-то неровно и даже немного хуже, чем с самыми обыкновенными дубовыми проводами в полиэтиленовой изоляции. И дело тут не в том, что вам продали подделку — провода нормальные. Просто они не подходят к вашему набору других узлов в зажигании.

А секрет тут в том, что такие провода имеют, так называемое распределенное сопротивление. Такое решение, с точки зрения борьбы за чистоту радиоэфира, является более эффективным. То есть, сам по себе кабель имеет значительное сопротивление, которое тем больше, чем длиннее у вас провод. Для разных марок проводов этот показатель разный, у некоторых сопротивление достигает значений в 25 кОм на метр. Соответственно, при слишком высоком сопротивлении, напряжения на вашей катушке просто не хватает для формирования нормальной искры.

Итак, с одной стороны, мы знаем, что низкое сопротивление хорошо, так как мы не имеем потерь высоковольтного напряжения, а с другой стороны, есть требования к помехозащищенности, что тоже не совсем глупость. Поэтому, покупая силиконовые провода, нужно обязательно ставить свечи без помехогасящего резистора, бегунок трамблера заменить на обычный, безрезистивный, а сами кабели выбирать с как можно меньшим сопротивлением. Так как надписям на коробках верить не стоит, вам поможет самый обыкновенный мультиметр. Нас вполне устроит сопротивление в пределах 6 кОм на метр.

Разумеется, провода должны хорошо фиксироваться в гнездах на трамблере и на самих свечах.

Обратите внимание — на части старых автомобилей катушка зажигания имеет винтовой зажим провода. Здесь силиконовые провода поставить не получится. Как минимум, центральный, нужно будет ставить обыкновенный медный.

Роль распределителя в классическом трамблере играет бегунок, жестко закрепленный на валу трамблера. С катушки зажигания через скользящий контакт на него приходит ток высокого напряжения, и разносится по боковым контактам, соединенным высоковольтными проводами со свечами зажигания. И если в крышке нет трещин, бегунок не имеет подгораний на контактах, уголек в норме и нет нагара на контактах крышки, искать неисправности под крышкой смысла нет. Остается только проверить наличие радиального люфта вала. И если таковой имеется, вы нашли причину нестабильной работы мотора на холостых оборотах. У вас просто постоянно плавает опережение зажигания.

В трамблере есть два автомата опережения зажигания. Они работают таким образом, чтобы на высоких оборотах у вас угол опережения смещался в сторону ранней искры, а при режиме максимальных нагрузок — поздней. Дело в том, что с ростом числа оборотов коленвала растет и скорость движения поршней, то есть, такты проходят за более короткий промежуток времени, а вот скорость сгорания смеси при этом остается неизменной. Соответственно, чтобы смесь успевала догорать к началу такта выпуска, момент зажигания должен быть чуть раньше, и чем выше обороты, тем сильнее должно быть смещение.

Но это не все, так как, мы знаем, что более богатая смесь горит быстрее, а значит при большем открытии дросселя и большем обогащении смеси, искру нужно подать позже.

Во времена суровых водителей, опережение регулировалось вручную, для чего в салон был выведен специальный регулятор, но сейчас все отдано автоматике.

  • Центробежный автомат опережения зажигания. Для того, чтобы до него добраться, нам нужно снова заглянуть в корпус распределителя. Здесь мы увидим два подпружиненных грузика, которые расходятся в стороны при увеличении оборотов, смещая угол в сторону опережения. Из неисправностей бывает чисто механический износ и поломка или соскакивание пружинок.
  • Вакуумный автомат опережения зажигания. Его хорошо видно. Он стоит на боковой стенке трамблера, закрепленный двумя винтами М4. Представляет собой герметичный сосуд, закрытый мембраной, на которую закреплена тяга, смещающая зажигание при возникновении в сосуде разряжения. Само разряжение создает карбюратор, в задроссельном колодце которого имеется отверстие, соединенное вакуумной трубкой с автоматом опережения. Проверить автомат очень просто. Достаточно его снять и, потянув в себя воздух из его входной трубки, убедиться в наличии перемещения штока. Деталь не ремонтопригодная, в случае выхода из строя просто меняется в сборе.
Читайте также:  При выключенном зажигании работает вентилятор охлаждения

Вариатором называется дополнительное сопротивление в системе зажигания. Оно ограничивает напряжение на входе катушки зажигания во время работы двигателя и отключается в момент запуска. Сделано это для того, чтобы в момент пуска сделать искру поярче, а после запуска дать катушке работать в щадящем режиме. В современных коммутаторах эта функция реализована электроникой, и в добавочном резисторе нужды уже нет. Есть и катушки, которые в ограничении напряжения не нуждаются.

В последние три десятилетия на рынке запчастей и тюнинга появилось несколько интересных и весьма полезных устройств.

  • Усилители искры. Эти приставки устанавливались в разрыв низковольтной цепи катушки зажигания. Их работа была в усилении низкого напряжения на входе первичной обмотки. С появлением бесконтактного зажигания они стали неактуальными, но в прежние времена здорово упрощали жизнь водителям при зимней эксплуатации автомобиля.
  • Электронные корректоры зажигания. Их плюсом можно считать отсутствие механических зависимостей в работе.
  • Электронные корректоры опережения зажигания с датчиком детонации. Система имела выносной датчик, крепящийся на блоке или головке и подающий сигнал на смещение угла опережения при возникновении детонации. Как результат — более плавная работа мотора в переходных режимах и лучшая приемистость.

Как видим, разобраться здесь не очень сложно. Зажигание автомобилей ГАЗ, в принципе, достаточно надежная система, и при своевременном обслуживании проблем вам доставлять не должна.

Катушка зажигания – служит для преобразования тока низкого напряжения, в ток высокого напряжения 20-40 кв. По использованию, катушки бывают экранированные –Б5-А и Б 102-Б и неэкранированные Б – 114. Сердечник катушки набирают из листов электротехнической стали, изолированных друг от друга окалиной. Таким образом уменьшаются вихревые токи. На трубку из картона наматывается вторичная обмотка из эмалированного провода ПЭЛ-0,06- 0,1мм, (20-30 т. витков). Поверхность вторичной обмотки изолируют кабельной бумагой. Фарфоровый изолятор, предотвращает пробой вторичной обмотки на кожух. Поверх вторичной обмотки наматывают первичную обмотку, провод марки ( ПЭЛ- 0,57-0,77 мм)- 250-300 витков. Внутреннюю полость большинства катушек заполняют маслом.

Добавочный резистор (вариатор) в виде спирали из никелевой проволоки и крепится в двух половинах керамического изолятора. Вариатор включен последовательно в первичную цепь. Он изготовлен из материала, сопротивление которого возрастает с повышением температуры. С увеличением частоты вращения коленчатого вала средняя величина силы тока в первичной цепи падает, температура снижается и сопротивление снижается. При уменьшении частоты сопротивление вариатора повышается. Таким образом стабилизируется напряжение и предотвращается перегрев катушки зажигания.

Прерыватель – распределитель – этот прибор прерывает в необходимый момент, цепь тока низкого напряжения и распределяет ток высокого напряжения по свечам, в соответствии с порядком работы двигателя. Кроме того он изменяет угол опережения зажигания в зависимости от оборотов двигателя и в зависимости от нагрузки двигателя.

Состоит из прерывателя тока низкого напряжения в виде двух контактов (подвижного и неподвижного) и кулачкового вала, распределителя высокого напряжения, центробежного и вакуумного регуляторов опережения зажигания, октан корректора и корпуса.

Параллельно контактам прерывателя установлен конденсатор, для защиты контактов от тока самоиндукции вторичной обмотки катушки зажигания. Валик прерывателя –распределителя вращается от валика масляного насоса или от распределительного вала, в подшипниках скольжения (медно-графитовые втулки). Прерыватель смонтирован на подвижном диске, установленном на шарикоподшипнике и может поворачиваться на некоторый угол.

Центробежный регулятор – служит для изменения угла опережения зажигания в зависимости от числа оборотов двигателя. При увеличении оборотов грузики расходятся и поворачивают кулачок прерывателя в сторону увеличения угла опережения зажигания.

Вакуумный регулятор – служит для изменения угла опережения в зависимости от разрежения в диффузоре, т.е. в зависимости от нагрузки. При увеличении нагрузки угол опережения зажигания уменьшается, а при уменьшении нагрузки – увеличивается.

Октан – корректор – служит для установки исходного угла опережения зажигания в зависимости от октанового числа топлива.

Датчик импульсов – в распределителе зажигания Р 351, вместо прерывателя тока для управления моментом искрообразования системы зажигания. Датчик состоит из статора и ротора. Статор представляет собой обмотку, заключённую в специальный корпус, а ротор – постоянный магнит с восемью парами полюсов. Ротор получает вращение от вала распределителя через центробежный регулятор. При вращении ротора в обмотке статора наводятся импульсы переменного напряжения, которые поступают на вход транзисторного коммутатора. Коммутатор, реагируя на поступающие сигналы, прерывает первичную цепь системы зажигания.

Транзисторный коммутатор – предназначен для коммутации (размыкания и замыкания) первичной цепи системы зажигания в соответствии с поступающими к нему сигналами.

Коммутатор ТК 102 имеет четыре клеммы (М.К.Р. и одна клемма без обозначения). Состоит из корпуса из алюминиевого сплава с рёбрами охлаждения, транзистора, 2- стабилитрона, резистора, 2- конденсатора и импульсный трансформатор. Устанавливается в контактно-транзисторной системе зажигания.

Коммутатор ТК 200 – в бесконтактной системе зажигания ЗИЛ-131, собран на кремниевых транзисторах типа Н-Р-Н и имеет четыре экранированных штепсельных разъёма (КЗ, Д и два ВК).

Свеча зажигания преобразует импульсы высокого напряжения в искровой разряд в камере сгорания. Стальной корпус с приваренным к нему боковым электродом имеет резьбу. В корпусе закреплён керамический изолятор с центральным электродом. Вывод центрального электрода наружу осуществляется через токопроводящий герметик и стальной стержень. Свечи работают в тяжёлых условиях. Напряжение до 40 кв, тепловые нагрузки от 40-2500 о С, высокое давление.

Изолятор изготавливается из керамических материалов с высоким содержанием окиси алюминия; уралит, боркорунд, синоксаль и др. Для улучшения изоляционных свойств изоляторы покрывают глазурью. Центральный электрод изготавливают из высокохромистых сплавов, а боковой из никель- марганцевых. Искровой зазор от 0,6-0,9 мм

Для бесперебойной работы свечи тепловой конус изолятора должен иметь температуру 500-600 о С. При такой температуре масло, попадающее на изолятор, сгорает без образования нагара. Если температура ниже-то масло будет сгорать не полностью, образуя слой нагара. При слишком высокой температуре (800 о С) возникает калильное зажигание и смесь воспламеняется от соприкосновения с раскалённым конусом и электродом до появления искры.

Характеристикой тепловых качеств свечей является калильное число: 8;11;14;17;20;23;26

Маркировка свечей: А11НТ; А17ДВ; А17ДВРМ.

А- диаметр резьбы- М14х 1,25

Н- длина ввёртываемой части – 11мм. (горячая свеча)

Р- встроенный резистор

М- биметаллический центральный электрод

В- тепловой конус выступает за корпус

  1. Для чего служит система зажигания и что в неё входит
  2. Для чего служит катушка зажигания и как она устроена
  3. Как работает катушка зажигания
  4. Назначение дополнительного сопротивления катушки зажигания
  5. Как устроен и для чего служит конденсатор
  6. Для чего служит, как устроен и как работает прерыватель
  7. Устройство и принцип работы распределителя
  8. Что называется опережением зажигания и для чего оно делается
  9. Как устроен и работает центробежный регулятор опережения зажигания
  10. Как устроен и работает вакуумный регулятор опережения зажигания
  11. Как устроена свеча зажигания

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8754 – | 7146 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Оцените статью
Добавить комментарий

Adblock
detector