Момент инерции умножить на угловую скорость

В этой статье речь пойдет о физических величинах, которые характеризуют вращательное движение тела: угловая скорость, угловое перемещение, угловое ускорение, момент сил.

Твердым телом называют совокупность жестко связанных материальных точек. Когда твердое тело производит вращение относительно какой-либо оси, отдельные материальные точки, из которых оно складывается, двигаются по окружностям разных радиусов.

За определенный промежуток времени, например, за которое тело совершит один оборот, отдельные материальные точки, из которых состоит твердое тело, пройдут разные пути, следовательно, отдельные точки будут иметь разные линейные скорости. Описывать вращение твердого тела с помощью линейных скоростей отдельных материальных точек – сложно.

Угловое перемещение

Однако, анализируя движение отдельных материальных точек, можно установить, что за одинаковый промежуток времени все они поворачиваются вокруг оси на одинаковый угол. То есть для описания вращения твердого тела удобно пользоваться такой физической величиной, как угловое перемещение:

Угловая скорость и угловое ускорение

Вращательное движение можно охарактеризовать угловой скоростью: ω = ∆φ/∆t.

Угловая скорость характеризует скорость вращения тела и равняется отношению изменения угла поворота ко времени, за которое оно произошло. Измеряется в радианах за секунду: [ω] = рад/с.

Угловая скорость вращения связана с линейной скоростью следующим соотношением: v = Rω, где R – радиус окружности, по которой двигается тело.

Вращательное движение тела характеризуется еще одной физической величиной – угловым ускорением, которое равно отношению изменения угловой скорости ко времени, за которое оно произошло: ε = ∆ω/∆t. Единица измерения углового ускорения: [ε] = рад/с 2 .

Угловая скорость и угловое ускорение являются псевдовекторами, направление которых зависит от направления вращения. Его можно определить по правилу правого винта.

Равномерное вращательное движение

Равномерное вращательное движение осуществляется с постоянной угловой скоростью и описывается такими уравнениями: ε = 0, ω = const, φ = φ + ωt, где φ – начальное значение угла поворота.

Равноускоренное вращательное движение

Равноускоренное вращательное движение происходит с постоянным угловым ускорением и описывается такими уравнениями: ε = const, ω = ω+ εt, φ = φ + ωt + εt 2 /2.

Во время вращения твердого тела центростремительное ускорение каждой точки этого тела можно найти так: ɑц = v 2 /R = (ωR) 2 /R = ω 2 R.

Когда вращение твердого тела ускоренное, можно найти тангенциальное ускорение его точек по формуле: ɑt = ∆v/∆t= ∆(ωR)/∆t= R(∆ω/∆t) = Rε.

Момент сил

Если, рассматривая физическую проблему, мы имеем дело не с материальной точкой, а с твердым телом, то действие нескольких сил на него, приложенных к различным точкам этого тела, нельзя свести к действию одной силы. В этом случае рассматривают момент сил.

Читайте также:  Метан на ларгус 7 мест

Моментом силы называют произведение силы на плечо. Это векторная величина, и ее находят по формуле: M = RFsinα, где α – угол между векторами R и F. Если на тело действует несколько моментов сил, то их действие можно заменить их равнодействующей, векторной суммой этих моментов: M = M1 + M2 + …+ Mn.

Эксперименты и опыт показывают, что под действием момента силы угловая скорость тела меняется, то есть тело имеет угловое ускорение. Выясним, как зависит угловое ускорение материальной точки (совокупности материальных точек) от приложенного момента сил: F = mɑ, RF = Rma = R 2 mβ, β= M/mR 2 = M/I, где I = mR 2 – момент инерции материальной точки. Заметим, что момент инерции тела имеет зависимость как от массы тела, так и от расположения этой массы относительно оси вращения.

Примеры решения задач

Задача 1. Ротор центрифуги делает 2•10 4 об/мин. После того как выключили двигатель, его вращение прекращается через 8 мин. Найдите угловое ускорение, а также число оборотов, которое совершает ротор с момента выключения двигателя до его полной остановки, считая, что движение ротора равноускоренное.

Найдем угловое ускорение, учитывая, что угловая скорость при равноускоренном движении описывается уравнением: ω(t) = ω – εt.

Отсюда, учитывая, что в конце движения скорость равна нулю, найдем: ε = ω/t = 2πn/t.

Переведя данные задачи в систему единиц СИ (n = 333 об/с; t = 480 с), получим: ε = 2π333/480 = 4,36(рад/с 2 ).

Угол поворота ротора центрифуги за время t будет: φ(t)= φ + ωt + εt 2 /2. Учитывая выражение для углового ускорения и то, что φ = 0, находим: φ(t)= ωt/2 = πnt.

Количество оборотов ротора за это время будет: N = φ(t)/2π = πnt/2π = nt = 8•10 4 (об.).

Ответ: угловое ускорение равно 4,36 рад/с 2 ; количество оборотов, сделанное ротором с момента выключения двигателя до его полной остановки, равно 8•10 4 об.

Задача 2. Диск, имеющий массу 1 кг и радиус 20 см, вращается с частотой 120 об. в минуту. Под действием тормозного устройства на край диска начала действовать сила трения 10 Н. Найдите время остановки диска, после того как на него стала действовать сила трения.

Найдем тормозной момент сил, действующий на диск: M = RF.

Найдем угловое ускорение диска: ε = M/I = FR/mR 2 = F/mR.

Найдем время, за которое диск остановится: t = ω, где ω – начальная угловая скорость диска, которая равна 2πv.

Сделаем вычисления: t = 2πv/ ε = 2πvmR/F = 6,28•2•1•0,2/10 = 2,5 (с).

Ответ: время остановки равно 2,5 с.

Кто из нас не следил с удивлением и восторгом за тем, как эффектно фигуристы заканчивают свои выступления на ледяной арене? Они начинают вращаться, зафиксировав центр вращения одним коньком и отталкиваясь другим, широко разведя руки в стороны, достигают достаточно большой угловой скорости вращения, а затем быстро прижимают руки к телу. После этого их угловая скорость вращения резко возрастает.

Читайте также:  Ремонт генератора бош 110а на гранте

В чем же тут дело? Почему, лишь прижав руки к телу и не прикладывая больше никаких усилий, фигуристу удается резко увеличить угловую скорость своего вращения? Не опровергается ли этим закон сохранения энергии? Конечно, нет. Объяснение описанного явления дает один из разделов ньютоновской механики — динамика твердого тела. Под твердым телом при этом понимается система частиц, взаимные расстояния между которыми не изменяются.

Оказывается, несмотря на сложность задачи о вращательном движении твердого тела, ее можно свести к решению уравнений, по форме аналогичных уравнениям Ньютона для поступательного движения.

Роль ускорения, силы и массы в этом случае играют угловое ускорение, момент силы и момент инерции. С этими важными понятиями можно познакомиться на простом примере движения одной материальной точки А массой т, которая удерживается на окружности радиуса г с помощью невесомого стержня. Пусть на точку А действует постоянная сила F. Если в данный момент она составляет угол а с радиус-вектором материальной точки А, то ее составляющая cosa просто сжимает стержень, а составляющая sina приводит к появлению тангенциального ускорения , изменяющего величину скорости частицы. (Это ускорение направлено по касательной к траектории частицы. Его следует отличать от центростремительного ускорения, которое всегда направлено к центру вращения и меняет лишь направление вектора скорости частицы.)

Согласно второму закону Ньютона, для тангенциального ускорения можно записать:

По аналогии с угловой скоростью введем угловое ускорение . Оно характеризует скорость изменения угловой скорости со временем. Тогда равенство (1) будет иметь вид:

Умножив обе части этого уравнения на радиус, получим:

Величина , численно равная произведению силы F на длину перпендикуляра , опущенного на направление силы из центра вращения (плечо силы), называется моментом силы относительно точки О. Величину , равную произведению массы материальной точки А на квадрат ее расстояния до центра вращения, называют моментом инерции материальной точки относительно точки О.

В случае произвольного твердого тела момент инерции характеризуется распределением массы в этом теле и определяется суммой моментов инерции совокупности материальных точек, на которые можно разбить твердое тело:

где — масса точки, — ее расстояние до оси вращения.

Момент инерции служит мерой инертности тела при вращении и, таким образом, играет ту же роль, что и масса в случае поступательного движения. Однако в отличие от массы тела, которая при обычных условиях остается неизменной, момент инерции можно легко менять. Действительно, даже в рассмотренном выше простейшем случае материальной точки на стержне момент инерции зависел не только от величины массы, но и от того, как далеко она расположена от оси вращения. Поэтому, перемещая материальную точку по стержню от центра вращения, можно увеличивать инерцию вращения такой системы.

Читайте также:  Белый налет на клапанах двигателя

В зависимости от формы и выбранной оси вращения твердые тела одной и той же массы могут иметь различные моменты инерции. Так, момент инерции полого цилиндра радиуса г относительно его оси симметрии равен однородного шара, вращающегося относительно оси, проходящей через его центр, – однородного цилиндра, вращающегося относительно своей оси симаетрии, – .

И момент силы , и угловая скорость , и угловое ускорение , так же как и соответствующие им величины силы, скорости и ускорения при описании поступательного движения, являются векторами. Эти векторы направлены вдоль оси вращения (аксиальные векторы), причем их направление определяется по правилу буравчика, т. е. совпадает с направлением поступательного движения буравчика, рукоятка которого вращается в том же направлении, что и тело.

Можно ввести еще один важный вектор: , называемый моментом количества движения. Являясь аналогом импульса для вращательного движения, он обладает замечательным свойством: момент количества движения замкнутой системы остается постоянным по величине и направлению. Изменяется он только под воздействием приложенных к рассматриваемой системе некомпенсированных моментов внешних сил.

Вернемся снова к началу этой статьи, где рассказывалось о вращающемся фигуристе. Пренебрегая малыми моментами действующих на него сил сопротивления, можно считать, что он представляет собой замкнутую систему. Поэтому достигнутый им при начальном разгоне момент количества движения должен сохраняться ( — его начальная угловая скорость, — момент инерции в положении с разведенными руками). Прижимая руки к телу, фигурист, очевидно, уменьшает свой момент инерции до некоторой величины и тем самым увеличивает свою угловую скорость: Однако в этот момент ему приходится «поработать», так как начальная кинетическая энергия его вращения была , а конечная — становится . Разность этих энергий и составляет величину работы фигуриста.

Самое лучшее определение вращательного момента – это тенденция силы вращать предмет вокруг оси, точки опоры или точки вращения. Вращательный момент можно рассчитать с помощью силы и плеча момента (перпендикулярное расстояние от оси до линии действия силы), или используя момент инерции и угловое ускорение.

Оцените статью
Добавить комментарий

Adblock
detector